Arduino y LoRaWAN

Arduino MKR WAN 1300

MKR WAN 1300 es una placa potente que combina la funcionalidad de la conectividad MKR Zero y LoRa. Es la solución ideal para los fabricantes que desean diseñar proyectos de IoT con una mínima experiencia previa en redes que tengan un dispositivo de baja potencia.

La placa MKR WAN 1300 tiene comunicación inalámbrica unido a un diseño de la placa MKR Zero Board, es decir, que tendremos soporte para aplicaciones de 32 bits. La placa cuenta con 256KB de Memoria flash y 32KB SRAM. Puede funcionar con la energía de dos pilas de 1,5V y todo en un tamaño de 67,64 x 25mm. Al tener comunicación inalámbrica, el dispositivo al que se conecte tendrá opción de comunicarse a Internet.

El MKR WAN 1300 usar el módulo Murata CMWX1ZZABZ Lo-Ra module que lleva el transceiver Semtech SX1276:

Más información: https://store.arduino.cc/mkr-wan-1300

Buen artículo para sobre el MKR 1300: http://tinkerman.cat/arduino-mkr-wan-1300/

Moteino

Moteino es una plataforma de desarrollo compatible con Arduino inalámbrica de baja potencia basada en el popular chip ATmega328p utilizado en el Arduino-UNO, lo que lo hace 100% compatible con el IDE de Arduino (entorno de programación).

Para la programación, necesitará un adaptador FTDI externo para cargar los sketchs, con las ventajas de un menor costo y un tamaño más pequeño. La variante MoteinoUSB incluye el convertidor de serie USB.

Los Moteinos son compatibles y se pueden comunicar con cualquier otra plataforma Arduino o de desarrollo que utilice los populares transceptores HopeRF RFM69 o LoRa. Moteino también viene con un chip de memoria flash SPI opcional para programación inalámbrica o registro de datos.

Web Moteino: https://lowpowerlab.com/guide/moteino/

Moteino fue diseñado para ser una plataforma de desarrollo compacta, altamente personalizable y asequible, adecuada para IoT, domótica y proyectos inalámbricos de largo alcance. Estas son algunas de las características que distinguen a Moteino:

  • diseño modular pequeño y ligero que se adapta a recintos minúsculos
  • las configuraciones flexibles permiten el uso de varios transceptores inalámbricos
  • potencia realmente ultra baja: con tan solo ~ 2uA alcanzables en el modo de suspensión profunda, los Moteinos permiten que los proyectos con batería, como los sensores inalámbricos de movimiento/entorno, funcionen durante años. El modo de suspensión de Watchdog está en ~ 6uA (activación periódica). El nuevo 8Mhz Moteino permite el modo de sueño 100nA más bajo posible
  • Las radios sub-Ghz y LoRa producen un rango mucho más largo que las bandas de 2.4Ghz
  • programable de forma inalámbrica: puede volver a flashearlo sin cables, cuando se implementa en ubicaciones difíciles (solo con radios RFM69)
  • fácil de usar desde el familiar IDE Arduino, muchos ejemplos de código brindados para ayudarlo a comenzar

Pinout:

Los transceiver soportados por Moteino son:

Transceiver Datasheets

Muy buena explicación de los módulos de Adafruit: https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts/overview

Librería para los módulos RFM69: https://github.com/LowPowerLab/RFM69

IMPORTANTE: Los módulos RFM69 no son LoRa y no son compatibles con los módulos RFM95/RFM96. Además los módulos RFM95/RFM96 necesitan de una librería de terceros.

Más información RFM69:

Uso con Lora: https://lowpowerlab.com/guide/moteino/lora-support/

Librería para los módulos LoRa RFM95 (868-915mhz) and RFM96 (433mhz).: http://www.airspayce.com/mikem/arduino/RadioHead/index.html

Getting started para instalar el soporte y las librerías: https://lowpowerlab.com/guide/moteino/programming-libraries/

Github: https://github.com/LowPowerLab y Librería: https://github.com/LowPowerLab/Moteino

Comprar Moteino:https://lowpowerlab.com/shop/

Moteino weather shield: https://lowpowerlab.com/2016/09/09/weathershield-r2-released/ with a BME280 which includes all Temperature/Humidity/Pressure readings all in 1 sensor.

Moteino PowerShield: https://lowpowerlab.com/guide/powershield/

Gateway LoRa con Moteino + Raspberry Pi:

Dragino

En Dragino http://www.dragino.com/ podemos encontrar Hardware para LoRa: http://www.dragino.com/products/products-list.html

Wiki: http://wiki.dragino.com/index.php?title=Main_Page

La librería recomendada es: https://github.com/matthijskooijman/arduino-lmic, pero puede usarse la librería Radiohead: http://www.airspayce.com/mikem/arduino/RadioHead/

LoRa Shield:

Otro HW LoRa compatible con Arduino

Existen más HW de desarrollo compatible con Arduino con módulos LoRa diferentes:

Gateways LoRa

En las redes LoRaWan un gateway es un dispositivo dentro de la arquitectura de red que recibe los datos transmitidos por un dispositivo de nodo final y que reenvían los paquetes de datos a un servidor de red centralizado. Los datos de un nodo final LoRa pueden ser recibidos por múltiples puertas de enlace (gateway),

Los gateways o puertas de enlace son un puente transparente entre los dispositivos finales y el servidor de red central. Uno o más dispositivos finales se conectan a una o más puertas de enlace, mediante una conexión inalámbrica de un solo salto, usando tecnología RF LoRa™ o FSK, formando así una red en estrella.

Una o más puertas de enlace se conectan al servidor de red central por medio de conexiones IP estándar, formando así una red en estrella. Las comunicaciones entre los dispositivos y el servidor de red, son generalmente unidireccionales o bidireccionales, pero el estándar también soporta multidifusión, permitiendo la actualización de software en forma inalámbrica, u otras formas de distribución de mensajes en masa.

Los gateways son enrutadores equipados con un concentrador LoRa, lo que les permite recibir paquetes LoRa. Por lo general, puede encontrar dos tipos de puertas de enlace:

  • Las pasarelas se ejecutan con un firmware mínimo, por lo que son de bajo costo y fáciles de usar (por ejemplo, The Things Gateway) y solo ejecutan el software de reenvío de paquetes.
  • Gateways que ejecutan un sistema operativo, para el cual el software de reenvío de paquetes se ejecuta como un programa de fondo (por ejemplo, Kerlink IoT Station, Multitech Conduit). Esto le da más libertad al administrador del gateway para administrar su puerta de enlace e instalar su propio software.

Una forma de montar un gateway LoRa barato es con una Raspberry Pi y un hat de Moteino con un módulo LoRa:

Un gateway simple con LoPy: https://www.hackster.io/bucknalla/lopy-lorawan-nano-gateway-using-micropython-and-ttn-a9fb19

Construir un gateway LoRa barato: http://cpham.perso.univ-pau.fr/LORA/RPIgateway.html

Módulos LoRa para conectar un ordenador y haga de gateway: https://www.cooking-hacks.com/waspmote-gateway-sx1272-lora-sma-4-5-dbi-868-mhz y tutorial LoRa gateway Libelium: http://www.libelium.com/development/waspmote/documentation/lora-gateway-tutorial/

Lista de gateways de loriot: https://www.loriot.io/lora-gateways.html

The things gateway: https://www.thethingsnetwork.org/docs/gateways/gateway/

The Things Gateway permite que dispositivos como sensores y computadoras integradas se conecten a internet. Con un proceso fácil de conectar, está creando el aspecto más sustancial de su red de datos IoT. Active la puerta de enlace en solo 5 minutos y cree su propia red local. Con la capacidad de servir a miles de nodos, la puerta de enlace es el componente principal de su red conectada. Esta versión funciona a 868MHz para uso en la UE y 915Mhz para uso en los EE.UU.

Lista de gateways de thethingsnetwork:

Gateway draguino (open wrt): http://www.dragino.com/products/lora/item/119-lg01-s.html

Ejemplo con Dragino para usarlo como gateway (Lora Shield + Arduino Yun Shield):

Más información:

Librería RadioHead LoRa

Una de las librerías más usadas para módulos LoRa con Arduino es RadioHead: http://www.airspayce.com/mikem/arduino/RadioHead/index.html

Proporciona una biblioteca completa orientada a objetos para enviar y recibir mensajes paquetizados a través de una variedad de radios de datos comunes y otros transportes para microprocesadores integrados.

RadioHead consta de 2 grupos principales de clases: driversy managers.

  • Los drivers proporcionan acceso de bajo nivel a un rango de diferentes radios y otros transportes de mensajes paquetizados.
  • Los managers brindan servicios de envío y recepción de mensajes de alto nivel para una variedad de requisitos diferentes.

Cada programa de RadioHead tendrá una instancia de un driver para proporcionar acceso a la radio o transporte de datos, y generalmente un manager que usa ese driver para enviar y recibir mensajes para la aplicación. El programador debe instanciar un driver y un manager e inicializar el manager. A partir de entonces, las funciones del manager se pueden usar para enviar y recibir mensajes.

También es posible usar un driver por sí mismo, sin un manager, aunque esto solo permite un transporte no confiable y sin dirección a través de las funciones del driver.

Se admite una amplia gama de plataformas de microprocesadores.

Unos ejemplos de drivers:

  • RH_RF69 Works with Hope-RF RF69B based radio modules, such as the RFM69 module
  • RH_NRF24 Works with Nordic nRF24 based 2.4GHz radio modules, such as nRF24L01 and others.
  • RH_RF95 Works with Semtech SX1276/77/78/79, Modtronix inAir4 and inAir9, and HopeRF RFM95/96/97/98 and other similar LoRa capable radios. Supports Long Range (LoRa) with spread spectrum frequency hopping, large payloads etc.
  • RH_Serial Works with RS232, RS422, RS485, RS488 and other point-to-point and multidropped serial connections, or with TTL serial UARTs such as those on Arduino and many other processors, or with data radios with a serial port interface. RH_Serial provides packetization and error detection over any hardware or virtual serial connection. Also builds and runs on Linux and OSX.
  • RHEncryptedDriver Adds encryption and decryption to any RadioHead transport driver, using any encrpytion cipher supported by ArduinoLibs Cryptogrphic Library http://rweather.github.io/arduinolibs/crypto.html

Managers, cualquier manager puede usarse con cualquier driver:

  • RHDatagram Addressed, unreliable variable length messages, with optional broadcast facilities.
  • RHReliableDatagram Addressed, reliable, retransmitted, acknowledged variable length messages.
  • RHRouter Multi-hop delivery of RHReliableDatagrams from source node to destination node via 0 or more intermediate nodes, with manual routing.
  • RHMesh Multi-hop delivery of RHReliableDatagrams with automatic route discovery and rediscovery.

Esta librería es compatible entre otros con:

Para los módulos con moteino que se ha usado en la demo, son necesarios los drivers: http://www.airspayce.com/mikem/arduino/RadioHead/classRH__RF95.html

Si se quiere añadir una capa de seguridad debe usarse la clase: http://www.airspayce.com/mikem/arduino/RadioHead/classRHEncryptedDriver.html

Si se quiere usar direccionamiento debe usarse la clase: http://www.airspayce.com/mikem/arduino/RadioHead/classRHDatagram.html

IMPORTANTE PARA MODULOS LORA, la librería está configurada por defecto a 434: Check if you have set the right frequency:After putting the library in the right place, you have to also modify the frequency to the frequency you want to use, the position of this issetFrequency() in the file: arduino-xxx\libraries\RadioHead\RH_RF95.cpp;

Para los módulos RFM95 de moteino debe ponerse: setFrequency(868.0);

He hecho un fork de la librería con la modificación para módulos LoRa: https://github.com/jecrespo/RadioHead

Proyecto LoRa con Moteino

A la hora de afrontar un proyecto con LoRa para monitorizar un entorno donde no tenemos acceso a una red ethernet/wifi ni toma eléctrica, podemos planteamos usar Moteino como una solución basada en Arduino de bajo consumo y con módulos LoRa integrados.

La primera duda es que módulo de radio o transceiver usar el RFM69 o RFM95:

  • RFM69 no es LoRa usa modulación FSK en lugar de la modulación LoRa
  • RFM95 es LoRa estándar.

RFM69 y RFM95 son módulos de radio para comunicación a larga distancia, donde la velocidad de transmisión no es crítica (no se hace streaming de vídeo). Al usar modulación diferente no son compatibles entre ellos.

Estos módulos de radio vienen en cuatro variantes (dos tipos de modulación y dos frecuencias). Los RFM69 son los más fáciles de usar, y son bien conocidos y entendidos. Las radios LoRa son más potentes, pero también más caros.

Comparativa y explicación de los módulos: https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts

Transceiver Moteino: https://lowpowerlab.com/guide/moteino/transceivers/

RFM69

Módulo basado en SX1231 con interfaz SPI

  • +13 a +20 dBm hasta 100 mW Capacidad de salida de potencia (salida de potencia seleccionable en software)
  • Drenaje de corriente de 50 mA (+13 dBm) a 150 mA (+20 dBm) para transmisiones, ~ 30 mA durante la escucha de radio activa.
  • Las radios RFM69 tienen un alcance de aprox. Línea de visión de 500 metros con antenas unidireccionales sintonizadas. Dependiendo de las obstrucciones, la frecuencia, la antena y la potencia de salida, obtendrá rangos más bajos, especialmente si no tiene línea de visión.
  • Crear redes multipunto con direcciones de nodo individuales
  • Motor de paquete cifrado con AES-128

Guía completa del módulo de radio RFM69: https://learn.sparkfun.com/tutorials/rfm69hcw-hookup-guide

Librería Arduino RFM69: https://github.com/LowPowerLab/RFM69

Completa información RFM69: http://www.hoperf.com/upload/rf/RFM69W-V1.3.pdf

Explicación de librería RFM69 https://lowpowerlab.com/2013/06/20/rfm69-library/

RFM95

Módulo basado en LoRa® SX1276 con interfaz SPI

  • Capacidad de salida de potencia de +5 a +20 dBm hasta 100 mW (salida de potencia seleccionable en software)
  • ~ 100mA de pico durante la transmisión de + 20dBm, ~ 30mA durante la escucha activa de la radio.
  • Las radios RFM9x tienen un rango de aprox. Línea de visión de 2 km con antenas unidireccionales sintonizadas. Dependiendo de las obstrucciones, la frecuencia, la antena y la potencia de salida, obtendrá rangos más bajos, especialmente si no tiene línea de visión.

Estos son radios de paquete LoRa de +20 dBm que tienen una modulación de radio especial que no es compatible con los RFM69 pero que puede ir mucho más lejos. Pueden ir fácilmente a la línea de vista de 2 km utilizando antenas de cable simples, o hasta 20 km con antenas direccionales y ajustes.

Completa información RFM95: http://www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf

Librería: http://www.airspayce.com/mikem/arduino/RadioHead/

SX127x Datasheet – The RFM9X LoRa radio chip itself

Librería: http://www.airspayce.com/mikem/arduino/RadioHead/

Módulos Moteino Usados

Optamos LoRa porque da entre un 50% y 100% más de alcance.

LoRa support for Moteino: https://lowpowerlab.com/guide/moteino/lora-support/

Todo sobre moteino y como programarlo: https://lowpowerlab.com/guide/moteino/

Los moteino a usar con LoRa son los moteinoLR y mejor moteinoUSB-LoRa que ya tiene el interfaz USB:

Para wireless programming necesitas las flash extra: https://lowpowerlab.com/guide/moteino/wireless-programming/

Gateway

Si queremos conectar a Internet los sensores, necesitamos un gateway.

Gateway con Raspberry Pi:

Otra opción de gateway es usar un shield LoRa de dragino:

Productos de dragino: http://www.dragino.com/products/products-list.html

Cloud

Ya tenemos el nodo y el gateway, nos falta el cloud que podemos hacerlo con muchas plataformas IoT.

Thingspeak: https://thingspeak.com/

Demo LoRa con Moteino

Medición de temperatura remota de forma inalámbrica usando LoRa con un MoteinUSB with flash https://lowpowerlab.com/guide/moteino/. Integración de los datos en un servidor propio https://www.aprendiendoarduino.com/ y en thingspeak https://thingspeak.com/. Se usa un gateway sencillo de reenvio de mensajes usando un Arduino Yun conectado por WiFi a Internet y un shield LoRa http://www.dragino.com/products/lora/item/102-lora-shield.html

Hardware Utilizado en el módulo LoRa

Hardware utilizado en el gateway:

Esta demo consiste en un cliente basado en un moteino alimentado por batería que manda datos de temperatura de una sonda DHT22 a un nodo central que hace de gateway basado en un Arduino Yun con un shield Lora de Draguino.

Cliente

Para empezar con Moteino, lo primero es instalar el soporte para estas tarjetas e instalar las librerías: https://lowpowerlab.com/guide/moteino/programming-libraries/

Luego la guía de programación con el IDE de Arduino: https://lowpowerlab.com/guide/moteino-programming/arduinoide/

Para LoRa usamos el módulo RFM95: https://lowpowerlab.com/guide/moteino/transceivers/ y necesitaremos la librería recomendada que soporta LoRa: https://lowpowerlab.com/guide/moteino/lora-support/. Para estos módulos la librería recomendada es: http://www.airspayce.com/mikem/arduino/RadioHead/index.html, la descargamos e instalamos.

Tomando como base el ejemplo rf95_client de la librería Radiohead modificado para mandar la temperatura de una sonda DHT22 que es un dato de tipo float, en lugar de “Hello World”.

El código del cliente está disponible en: https://github.com/jecrespo/aprendiendoarduino-lora/blob/master/Demo_LoRa/rf95_client/rf95_client.ino

Servidor/Gateway

Se usa un Arduino Yun https://store.arduino.cc/arduino-yun que dispone de conexión ethernet y wifi y para la red LoRa uso un LoRa shield de draguino http://www.dragino.com/products/module/item/102-lora-shield.html

Más información sobre el shield ver este documento: http://wiki.dragino.com/index.php?title=Lora_Shield

Para este shield uso la misma librería: http://www.airspayce.com/mikem/arduino/RadioHead/index.html,

Tomando como base el ejemplo rf95_server de la librería Radiohead modificado para recibir un float y sacarlo por el puerto de consola.

IMPORTANTE: en el ejemplo de rf95_server no usar el pin 9 para el led (int led = 9;) porque el pin 9 se usa como reset en el shield de draguino.

Una vez comprobado que el servidor recibe datos, debe hacer su función de gateway y mandar los datos a una base de datos alojada en https://www.aprendiendoarduino.com/ y poder ver la gráfica en https://www.aprendiendoarduino.com/servicios/datos/graficas.html

Para grabar datos se debe llamar a una API desde el arduino Yun. Uso el HTTP client para mandar datos https://www.arduino.cc/en/Tutorial/HttpClient. De esta forma hace el Arduino Yun + Shield LoRa de Gateway reenviando los datos recibidos por LoRa a un servidor público.

El código del servidor está en https://github.com/jecrespo/aprendiendoarduino-lora/blob/master/Demo_LoRa/rf95_server/rf95_server.ino

Dispositivos Sigfox y Lora recogiendo datos en campo:

Para mandar los datos a thingspeak uso la API y mando los datos llamando a https://api.thingspeak.com/update?api_key=writeapikey&field1=22.8

Está disponible una vista publica de los datos: https://thingspeak.com/channels/440179

Demo MKRFOX1200

Medición de temperatura y humedad con un Arduino MKRFOX1200 y sistema simple de alarma basado en un umbral superior. Integración en un servidor propio https://www.aprendiendoarduino.com/ y en thingspeak https://thingspeak.com/

Hardware utilizado:

En esta demo demuestra la potencia de la red Sigfox para IoT, usando un sistema simple se va a medir la temperatura y humedad ambiente de forma inalámbrica y con total movilidad. Se usa un sensor de temperatura y humedad DHT22 conectado al MKRFOX1200 que manda mensajes con los datos cada 30 segundos para esta demostración. Para no llegar al límite diario de mensajes de Sigfox habría que hacerlo cada 10 minutos.

En el mensaje se mandan 3 datos:

  • Temperatura (5 bytes en ASCII). De -9.00 a 99.99
  • Humedad (5 bytes en ASCII). De 00.00 a 99.99
  • Evento de alarma (1 byte ASCII). 0 = normal (no event), 1 = alarm triggered, 2 = restore alarm.

Lo mando todo como texto para simplificar todo, pero si puede mandar los float y ahorrar un byte. Un buen ejemplo de base para mandar un float y convertir diferentes tipos de datos para mandar por sigfox: https://github.com/nicolsc/sigfox-weather-station

El propio Arduino detecta la alarma de alta temperatura y manda en el byte de alarma el evento, cuando la alarma se recupera manda un nuevo evento de recuperación.

Puesto que desde el backend de Sigfox no es capaz de distinguir cuando es una alarma o no, ya que solo puede reenviar los datos del mensaje mandado por el dispositivo sigfox, estos datos se reenvían mediante dos callbacks a:

En ambas plataformas la misión es almacenar los datos, representarlos gráficamente y analizar el mensaje y mandar el evento de alarma cuando corresponda. Incluso desde cualquiera de las dos plataformas, se podría hacer la comprobación de alarma al superar el umbral en lugar de mandarlo por mensaje Sigfox. Estas son las tareas que el backend de Sigfox no puede hacer.

La ventaja de usar un servidor/plataforma propia es que los datos los guardamos en nuestra infraestructura y son accesibles para siempre. Para el caso de la plataforma propia aprovechamos para guardar datos adicionales y aprender más de Sigfox:

Y desde la BBDD podríamos ver los valores máximos y mínimos de RSSI y SNR.

El código a cargar en Arduino es https://github.com/jecrespo/AprendiendoArduino-Sigfox

Dispositivos Sigfox y Lora recogiendo datos en campo:

Una vez cargado el código en Arduino y el dispositivo registrado en el backend de Sigfox ya podemos ver los los mensajes en el backend, dentro de device apartado messages.

Los datos del mensaje en el backend se ven en HEX, para comprobar que lo enviado es correcto se puede usar este conversor a ASCII: https://www.rapidtables.com/convert/number/hex-to-ascii.html

Desde el backend las funciones que se pueden hacer con los datos son muy limitadas, así que con el uso de las callbacks podemos reenviar estos datos a plataformas externas.

Estas callbacks transfieren los datos recibidos de los dispositivos asociados al device type a su infraestructura. Para obtener más información, consulte la documentación de callback: https://backend.sigfox.com/apidocs/callback

Las callbacks están asociadas a los device type, he creado dos callbacks una para mandar los datos a la plataforma propia https://www.aprendiendoarduino.com/ y otra para reenviar los datos a thingspeak https://thingspeak.com/

Para  https://www.aprendiendoarduino.com/ el callback es:

Y el código que guarda los datos en la BBDD y manda los mensajes de alarma está hecho en PHP y el código está en: https://github.com/jecrespo/aprendiendoarduino-servicios/tree/master/sigfox y además de guardar los datos en una BBDD, las temperaturas los guarda en otra BBDD para representar gráficamente y se encarga también del envío de alarmas.

Y veo los datos en tiempo real:

Para la plataforma thingspeak: https://thingspeak.com/, hago una llamada a la API de sigfox para actualizar: https://api.thingspeak.com/update.json?api_key=writeapikey&field2={customData#humidity}&field1={customData#temperature}

El callback es:

Este es un esquema de lo que estamos haciendo:

Lo que hago es desde el backend de sigfox es reenviar los datos a la plataforma IoT:

Desde thingspeak hay que configurar un canal con los campos temperatura y humedad y podemos dar una vista pública que puede verse en https://thingspeak.com/channels/440162